Understanding the Terroir of Burgundy Part 4.3 Erosion and Rills: Studies in Vosne-Romanée and Monthélie

Erosion in Vosne Romanee

In the water’s path

Erosion comes in two forms: the seen and the unseen.

Rill erosion is the most obvious form of erosion and typically occurs in heavier downpours of more than 30 mm (1.2 inches) over a 24 hour period. They begin in spots where soil aggregates are weakened, and will collapse with weight and friction of the water above it, forming the aqueduct-like channels into which the runoff will funnel. Rills often generate in flow zones,  gathers in the depressions between rows. Here water can consolidate, growing in volume and velocity as moves with increasing rapidity down the hillside. With the water growing in mass and speed, larger and larger soil particles are pulled with it, releasing from both the bottom and sides of the rill, developing their typically U-shaped trough. As rills go unrepaired, they can grow substantially,  that can be difficult to control, if measures are not already in place to prevent them.

Sheet erosion (aka surface erosion) is a precursor to, and happens simultaneously with, rill erosion. In this case, rainwater runoff moves in sheets across the surface of the vineyard, but between and through the vines in places where rills won’t, or have not yet, formed. Surface runoff has a less concentrated volume of water than the runoff that travels through rills, so it yields a lower speeds and less velocity. Because of this limited velocity, the water of surface runoff is capable of carrying particles with a lower suspension velocity than rills are capable. These may include sands, but unless the downpour was heavy, would primarily include clays and silts. In less intense storms (< 20mm) surface runoff can cause sheet erosion, but these actions are considered slightly erosive, typically transporting finer materials in weak aggregates. From year to year, soil loss to sheet erosion goes largely unnoticed as the topsoil loss directly beneath the vines disappears down the hillside forever.

  • For an explanation of erosional factors and concepts click here for part 4.2
  • For history of erosion and vineyard restoration in Burgundy click here for Part 4.1
  • For the history of erosion and man in Burgundy click here for Part 4.


2006 Study of erosion in Vosne-Romanée, Aloxe-Corton, and Monthélie

Two sibling studies, preformed by the same research team, illustrates very well the processes of erosion (detailed in part 4.2), and how it affects the wine we drink. These are multi-discipline studies by conducted by the team of Amélie Quiquerez, Jean-Pierre Garcia, and Christophe Petit from the Université de Bourgogne, and Jérôme Brenot from Géosciences Université de Rennes.

The first of the two studies was published in the Bolletino della Società Geologica Italiania 2006, with contributions by Philippe Davy, Université de Rennes. Entitled “Soil erosion rates in Burgundian vineyards (link).” It examined the erosion rates in the villages of Vosne-Romanée, Aloxe-Corton, and Monthélie. I highly encourage you to look at these important studies to get their analysis, which in some ways is limited by the rigors of science which require the researcher to prove what they already know to be true. My overview of the information revealed by their study applies my own perspective and insights.

The researchers selected three steep, upper-hillside vineyards from which to gather data, all which carried essentially the same average grade, with a mean of 10.5% for Vosne and Aloxe-Corton, with Monthelie the steepest, with a mean slope of 10.7%.  Additional selection criteria were all three were they must meet these three (very traditional Burgundian) vineyard practices.

  1. The rows ran vertically down the hillside.
  2. None of the plots were allowed to have grass grow between the vines.
  3. Frequent plowing or tractor crossings (up to 15 times per year)

However, I note two marked differences between the vineyards. 

  1. How much the slope changed within the plot boundaries.
  2. The length of the slope. 
Vosne Damodes

Vosne Damaudes photo: google earth

The study’s most uniform slope was a vineyard in Vosne, with a fairly consistent 10% to 12% grade. It also had, by far, the longest slope studied, at 130 meters.(1)  This longer slope length, one might expect, would allow water to gain volume, speed, and velocity. These three factors all increase the runoff’s ability to carry larger and heavier particles with higher suspension velocities. Conversely, it was the only slope studied which had a murger (stone wall) at its base, slowing the runoff enough to allow sedimentation to occur, and it would appear to be the only plot with a level spot for sedimentation to rest. 

Although unnamed by the study’s author, I have concluded this vineyard is Les Damaudes on the Nuit-St-Georges border. Clues to its identity include a maximum elevation of 345 meters – the highest in Vosne, and uniform slope of 10-12%. Identifying the parcel location is possible as well, as only one location in Les Damaudes is long enough to fit the 130-meter plot length of this study. When subtracting in the dirt roads at the top and bottom of the vineyard, which are natural erosional breaks, the total length is 126 meters. This vineyard was studied in-depth, over a multi-year period, and spawned the two studies I will detail in this article.

The vineyard in Aloxe-Corton may contain a significantly steeper section than the vineyard in Vosne, with a 17% grade, but overall the Aloxe-Corton vineyard had the same average gradient as the plot in Vosne, at 10.5%. This indicates that part of that vineyard had to contain no more than a 5% grade. Additionally, this vineyard was the shortest plot at 53 meters, meaning as long as fast-moving runoff could not enter the plot freely from above, runoff should not be able to attain the same velocity as it might in Vosne. Because of this, we might anticipate erosion lower erosional levels. There is no specific information that might allow us to identify this vineyard. And while the author Jérôme Brenot included a photo and a brief reference to the grand cru vineyard of en Charlemagne (regarding rill erosion down to the limestone bedrock), the lieu-dits  of en Charlemagne is in neighboring PernandVergelesses, not Aloxe-Corton

Monthelie Clou du Chenes

The section of Monthélie studied is snug against the Volnay border. Here in 2012, some grass is now being allowed to grow between the vines. The vineyard above, La Pièce-Fitte, has one plot that is in pretty poor shape, with gaps between vines, and rills that because of the slight off camber row orientation cut right up against the vines, rather than directly between the rows. photo: googlemaps click to enlarge

The slope in the study with the steepest section, by far, was in Monthélie. The plot there reaches a maximum pitch of 24.5%, but the average gradient is only slightly greater at 10.7%, which again indicates much of the vineyard is gentile in its declivity. This vineyard, which would become a 1er cru shortly after the study was published, is the vineyard of Le Clou des Chênes,(2) and this parcel appears to share a border with Volnay’s ez Blanches vineyard. The study measured nearly twice the plot-wide erosion at 1.7 mm (± 0.5 mm year) as they did in either Vosne or Aloxe-Corton. However, in some locations within Le Clou des Chênes had far greater erosional levels: measuring as deep as 8.2 mm (± 0.5 mm) per year.

Notable is that the time under vine is much shorter, having been planted 32 years before the study. This makes the losses all the more alarming for these steeper slopes because the knowledge of how to resist erosion has improved so dramatically in the past twenty years.  

Data collection and methodology

This much erosion surely has had a tremendous influence on the character of the wines produced from these vines.

This much erosion surely has had a tremendous influence on the character of the wines produced from these vines.

Determining these numbers involved a massive data collection effort, imputing vine measurements on a meter by meter scale. With 10,000 plants planted per hectare, this translates into thousands of data points are required to arrive at the final calculations.

Soil loss was determined by measuring the exposed main framework roots from the current soil level to the point of the graft cut. The graft is typically made 1 cm above the soil level at the time of planting, and with this measurement original soil level at the time of planting can be established (NEBOIT, 1983; GALET, 1993). By dividing this measurement by the number of years since planting, a relatively accurate average rate of erosion can be established. This method of using plants to give a historical record is called dendrogeomorphology, which is a geologic adaptation of dendrochronology, the study of trees and plants to determine the historical climatic record.

An unequal field of study

Photo: Jérôme Brenot et al

Photo: Jérôme Brenot et al

In the end, there was a single factor that differentiated these study vineyards: the road and the stone wall below the Les Damaudes vineyard in Vosne. Because of this road and wall, it also was the only vineyard that had an area at the base of the slope that was able to retain alluvial sediment. This proved to be an important last gasp defense regarding soil loss and allowed that sediment to be returned to the slope. With this material, workers could fill the rills in Vosne, that would grow into gullies down to the base rock in Aloxe-Corton and Monthélie.

The return of the sediment to fill the rills was preformed bi-annually in the Les Damaudes parcel. However, the owners of this vineyard were lucky rather than preventative. The wall was built as the headwall of the small clos that surrounds the vineyard below, and the access road that runs between the vineyards proved to provide the necessary flat collection area for the alluvium.

Inexplicably, the author chose to simply say that in Monthélie, the practice of returning  soil to the hillside had never been done, whereas in Vosne it had been practiced every two years. Strictly speaking this was true.  However when looking at satellite images of the vineyard, this statement appears somewhat disingenuous. In reality, the decision to plant the entire area Le Clou des Chênes in long rows without any roadways or other vineyard breaks, when coupled with the  parcel’s physical position on the hill, created a highly erodible vineyard in which no level “toe of the slope upon which might sediment gather. Returning sediment, that doesn’t exist, to the hillside is simply not possible. That does not excuse the vineyard owner from not removing vines to build a walls or taking other erosion prevention measures, but it also gives and indirectly assigns blame for this lack vineyard maintenance. The Aloxe-Corton parcel (where ever it was) is not mentioned as the owners never having returned alluvial sediment to the hillside, although this was apparently the case.

In 2006, the researchers took the adjacent photograph of Le Clou des Chênes, showing that rills had developed into gullies due to the lack of effective intervention by the grower. They also included photo looking up towards the Bois de Corton (which I have not included), with a rill/gully that extends down to the raw limestone base rock below.  In each photo, the vines roots can be clearly seen, having been exposed by the continuing erosion of these gullies. 

Study design: did the study reveal unexpected results?

In some ways, the wall below the parcel in Vosne was problematic to the study. The stone wall, and ability the return of the sediment by the grower directly impacted the amount of erosion recorded. The study’s author reports this in the write-up as: “by a factor of two”.  It not clear that the researchers anticipated this would be such a weighty factor when they formulated the study, since the focus of the study did not seem to take into account the effectiveness of wall in diminishing erosional forces. However the effect of the wall and the “anthropogenic factors” (meaning in these studies: the actions by man of returning the sediment to the hillside) certainly did have a dramatic effect on reducing the total soil lost, and the authors rightly took the opportunity to underscore the roll and value of murgers and clos as a primitive, but effective form of erosion control. (4)

But because of the wall (and the author’s eventual focus on it), other opportunities were lost. Since Les Damaudes in Vosne possessed the longest slope which also had the most consistent gradient, knowing how those factors affected erosion would have been instructional.  Had the erosion measurements been made before the anthropogenic resupply of the sediment to the slope, this information might have been gained. But since the measurements were taken after the rills were filled, ascertaining the impact of degree of slope and the length of the run can not be readily determined if the Vosne parcel is included in the analysis.

Further analysis of  meter by meter grid data, might answer some of these questions surrounding how much erosion is affected by increasing slope gradient and increasing slope length. Here the shorter Aloxe vineyard could have been compared to the top 53 meters of the steeper Monthélie vineyard. What were the erosional differences within these sections? What was the difference between erosion between the upper slopes and the lower slopes of the vineyards. Could these differences have been attributed to gradient or soil type? What were the soils left behind in the inter rows? Were they significantly different to the soils directly under the vines where the soil is more protected from rain strike and rill erosion? Then, if the full length of the Aloxe vineyard could be included, would there be greater erosion on the steeper sections where gravity has more effect? What about on the lower sections of the plot where increase water volume, speed and velocity might be expected to increase? It does not appear that these questions were asked by the study’s researchers in 2006.

It would be interesting if the data still exists and can be analyzed to examine those questions as well. It certainly would shed a more quantitative light on erosional forces on Burgundian hillside vineyards.

Study’s Opinion

In the opinion of the study, while in the short-term, erosion didn’t affect the vines production as long as the root system was not exposed, over time, the overall surface soil level declined despite the best efforts in Vosne to return the alluvial sediment to the hillside. At the time of the study, the most alarmed of growers had begun been attempting to restrict erosion by allowing grasses to grow between rows, shortening the length of rows and rebuilding walls. The authors suggest these processes be applied to all hillside vineyards.

The study of a single rain event in Vosne-Romanée

The second study released by this team in 2007 is far more detailed, focusing solely on the Damaudes vineyard. Entitled,Soil degradation caused by a high-intensity rainfall event (3) the paper details soil loss related to a single storm on June 11, 2004. This study is much more focused and is far more precise and instructional in its findings.

Vosne Damaudes erosion study

Click to enlarge.

The study’s centers on the erosional path, volume, and sediment type, as well as the net erosion levels measured in the vineyard after workers had returned sediment to the hillside, post-storm.

Soil analysis of the plot

The soils native to the vineyard are within this description from the text of the study. The prose is tight and dense so I will quote the author, Emmanuel Chevigny, here.

“The texture is rather homogeneous over the whole plot and is composed of 40% of clays and silts, 50% of gravels (2 mm to 10 mm) and a low sand and boulder content. The topsoils are ploughed (Mériaux et al., 1981). The argillaceous aggregates with polyhedral blunted to grained form are slightly structured. No pedogenetic segregation has been observed.”

The soil, as described, is a marl, with what I would think has a surprisingly high clay content for being this high on the slope. A better breakdown of clay and silt would be informative, because (as detailed in Part 2.1  and 2.2 regarding soil formation), clay is metamorphosed from limestone and other materials, and very fine in size, while silt is larger (between 0.0039 to 0.0625 mm), and not metamorphosed. Silts are often parented from quartz, which unlike limestone is not prone to chemical alteration, and thus will not produce clay minerals. The origin of this silt must have been transported from farther up-slope, having arrived in Les Damaudes through erosion.

The vineyard’s soil has a low sand content.

The author then writes about argillaceous aggregates, which are clay aggregates. In this sentence, they are writing about the type of soil structure found in the vineyard. Clays tend to form into blocky structures, where each clay units sides is the same shape or a cast of the aggregate next to it. In other words, when the blocky structures form, they are literally cast so that they fit together like a puzzle. Here he is saying that the edges of these casts of the aggregates have been blunted making them more grain like.  There is a soil type, classified as granular (grain-like), that is common to soils in grasslands with a high organic content, and Chevigny is clearly saying these are not granular soils.

Lastly, Chevigny notes that the researchers observed no pedogenetic segregation, meaning they could observe no identifiable soil creation nor the beginnings of soil horizons (sedimentary layering). This would lack of soil generation could be caused, in part, by plowing which disrupts soil horizons and encourages the erosion of weak young soils that have not developed into stronger aggregates. More on the concept of what soil is and pedogenesis later.

The gravel, or scree, which constitutes 45 percent of the vineyard’s soil makeup, (by definition) has slid into the vineyard by gravitational erosion, from higher on the hill. With the clearing of land and subsequent planting of the vines, this gravel has long ago been plowed into the clay-silt mixture. It is never mentioned by the study author, whether the scree is primarily limestone or not. Limestone is not a factor for these researchers, the particle size is squarely considered to be the issue.

By the numbers

While study revolves around the analysis of a tremendous amount of numerical data, to examine each piece of analysis is beyond the scope of this article, but their findings are none-the-less important and tells the story of erosion within a Burgundian vineyard very well. Below I’ve listed what I see as the most important changes to the hillside following this particularly heavy storm system:

  • Both rill and sheet erosion occurred, but rill erosion accounted for approximately 70% of all soil lost from the hillside.
  • A total of 13 rill erosion were noted, some forming a mere 30 meters from the upper plot boundary, that ran in straight lines down the slope, each time in the inter-rows.
  • Rills occurred across 59% of the inter-row area
  • The rills were U-shaped with strong vertical walls.
  • Estimated soil loss from the rills alone was 4.77 meters
  • A rill erosion for this rain event is estimated at 7.8 cubic meters (.275.5 cubic feet) and weighing roughly 6 metric tons (13,227 lbs)
  • An estimated 1.6 meters erosional material was deposited into 7 alluvial fans at the base of the plot.
  • The sedimentary fans consisted primarily of very fine sand to coarse sand that was between 63 μm (roughly the thickness of paper) to >2 mm. Only 10% of the fan sediment was silt clay fractions of less than 63 μm
  • Fan #4 had a total sediment area one-half of a meter cubed (.5m3).
  • The two rills that fed fan #4 had a total eroded area of .93m3  *
  • If 10% of the rill volume is sand, then 70 percent of the fan debris came from the rills while a remaining 30% must have come from surface erosion which fed into the rills and were deposited into the fans.
  • Topographic soil loss in inter-rows with rills was 3.9 mm, or 48 metric tons per hectare (105,800 lbs)  even after anthropogenic resupply of fan sediment to the hillside.
  • Mean (average) soil in non-rill effected vineyard area, was 1.4 mm, or 24 metric tons per hectare (52,900 lbs)

*1 cubic meter is equal to 1000 liters, or 6.29 oil barrels or 264 U.S. fluid gallons.

Storm size and frequency

Annual rainfall in the  Côte de Nuits is between 700 and 900 mm (27 inches to 34.4 inches) per year writes Chevigny, citing the Météo France weather service’s Atlas climatique de la Côte dOr 1994.*  The study also cites that storms with rainfall of more than 30 mm per day, occurred 10 times between 1991 and 2002. Nine of these rain event dropped between 30 and 50 mm, (1.1 inches to 2 inches) and a single storm dropped 63 mm (2.5 inches) of rain water per event/day. Based on this, we might expect that there have been 50 such events between planting and the 2006 study.

The storm event of June 11, 2004, was uniquely powerful because 40 mm fell in a two-hour period, which caused causing 3 times the annual erosion rate established by the 2006 study of 1 mm per year. Perhaps most importantly, the erosion of this single event is averaged into that 54 year period. This indicates that some years little erosion occurred. Because the study only includes storm records from 1991-2002, we can’t estimate the distribution of erosion over the span of these 54 years.

With global warming, storm intensity seems to be on the upswing in Burgundy, just as scientists have noted in other parts of the world. The severe hail events of 2012, 2013 and 2014, which centered over the hapless villages Pommard and Volnay, resulted in total crop loss for some growers.  In the Côte de Beaune, where precipitation and hail has recently been at its most extreme, has also been remarkably varied in its distribution. According to Jancis Robinson, in July of 2013, Volnay saw 57mm of rain (2.25 inches), while neighboring Monthelie only got 9.4mm. Needless to say, with this high degree of weather localization, these data figures are representative of the rainfall collection points only. There were likely areas of Monthelie that got much more rain, and areas Volnay that got much less rain than the data collection sites.  The massive storms of late November 2014 that saw 200-300 mm of rainfall along the Mediterranean coastline and into Austria, the Dijon saw 95 mm of rainfall over a 24 hour period. So, in terms of storms, it would appear that while the Côte d’Or gets regular, low volume rain events, it is by and large, relatively protected from major storm fronts.

*Current monthly statistics are can be found here, and the average rainfall in Dijon as of 2015 is 775 mm (30 inches) per year.

The sediment at the “toe of the slope” 

When examining sediment in the alluvial fans, researchers discovered that it was made up of 90% sand and 10% fine sediment. Fan number four, on which researchers focused their examination, contained nearly one meter of alluvial material. The fact that it contained little silt or clay, indicates that when the water became backed up at the stone wall, its movement did not slow enough for particles smaller than 63 μm (which includes all clays and silts) to fall out of suspension. This suggests there was a significant depth of water Then as the runoff began to gather enough volume to circumvent the murger, and continue downslope, it gained sufficient speed and velocity to quickly form rills in its path around the wall. The runoff carried virtually all particles smaller than fine sand out of the vineyard.

Study inconsistencies, and outdated or generic source material

Between the two articles, the explanation of soil and bedrock type differs. It is not clear why the authors of both studies would quote articles that are 35 to 45 years old, and that generic to the region rather than performing a shallow excavation themselves, in order to obtain information specific to that vineyard.

“The slopes are composed of Middle to Upper Jurassic limestones and marls (Mériaux et al, 1981) …“For example, the sandy-clayey screes (grèze litée) reach 3 meters on Comblanchien limestones in Vosne-Romanée.

In the second study they write:

“The hillslopes develop on Middle to Upper Jurassic limestones and marls, and are covered by colluvium soils of argillaceous-gravelly nature and formed by Weichselian cryoclastic deposits (grèze litées) reaching up to 3 m thick (Journaux, 1976).”

Writing of Comblanchien as a class of limestones is a red flag, as it is distinctly a singular type of limestone. Adding to the confusion is the soil percentages that at first appear to be attributed to the vineyard, are actually from the 1981 Mériaux et al study and generic to the  Côte d’Or. Later in the study, the percentage of sand is increased to >20% (from 10% sand and larger stones). 50% gravel content in the vineyard, which is cited in early in the text, is reduced to 45% later in the study write-up.


Computer modeling projects grain-size transition 

Computer projections of grain size changes after each major storm event.

Computer projections of grain size change after each major storm event. Click to enlarge

Because the researchers must begin their work with the soil percentages they observe, this 45% gravel, 40% clay/silt and 15% sand, was their starting point. It was quickly recognized that outgo of clay minerals, coupled with the simultaneous retention of sand would eventually change the vineyard make-up, so they developed a computer program to predict future changes in grain size distribution of the soil composition. Computer models showed after only 4-5 rain events of similar magnitude as the one in 2004, there would be significant changes to the soil makeup. The results of those projections are to the right.

Chevigny encapsulates their findings with this statement.

“…the results of our simulation clearly show that repeated rainfall events modify significantly and very rapidly surface soil grain-size distribution: after only a few events, the top soil has lost more than 30% of its fine material.”

The ultimate effect of this would be the loss of organic materials, nutrients and ultimately soil sustainability.

Study conclusion: vineyard practices enhance rill development and erosion

While the wall slows the net output of soil volume from exiting the plot, the most soils most viable for farming are being lost, while simultaneously, the soil texture and particle size are being irrevocably changed as the sand sediment is returned to the hillside, and disked back into the soil.

It is forwarded by the author, that this action, is part of the problem since rills continue to re-emerge in the same locations, year after year. They submit that ill propagation in the inter-rows is heightened by tilling and repeated passes tractors and foot traffic, and the regularity of rill spacing are evidence of this.  These practices, he writes causes decreased soil porosity (compaction) and restricts rainwater infiltration. Such wheeled ‘passage’ creates flow zones which increase the volume and velocity of runoff in a concentrated area, multiplying the quantity and size of material the runoff can carry. The evidence of these anthropologically created flow zones is the re-emergence of rills that return, repeatedly, in the same inter-rows, despite workers attempts to eliminate them by filling the rills and disking those areas.

It is clear the effort must be made to properly identify the flow zones and attempt to eliminate them but to do so is to understand their formation to begin with, and limit or eliminate that activity altogether.

For me, the results of the computer modeling and projections are not surprising. While this research team and Burgundian winemakers can only look forward to what is next, we have the opportunity to use this information to hypothesize what came before.  This will allow us to see the true arc of geomorphological progression in the vineyards, and thus how winemaking styles have and will continue to change in Burgundy.

Next UP:  Turning our understanding of the limestone Côte on its head




(1)  Vineyards typically are areas with no breaks or obstacles to slow or impede storm runoff, so longer vineyards tend to suffer more greatly from erosion. However, this was not identified as an erosional factor in the study write-up. The length of this Vosne vineyard was listed in the first study at 130 meters, while in the second study it was written as 126 meters.

(2)  Le Clou des Chênes’ increased prestige and vineyard value can be a tremendous incentive to better maintain a vineyard. The vines and vineyard appeared to be in good health in 2012, the last time googlemaps car drove up this stretch of road. Still, no murgers had been built as of that time.

(3) published by Emmanuel Chevigny of the Université de Bourgogne in 2007


Understanding the Terroir of Burgundy: Part 4.2 Erosion: fundamentally changing terroir

Erosion banner



Erosion is constantly changing the terroir of Burgundy, and in turn, it is altering the weight and character of the wines from virtually every vineyard on the Côte. How significant is erosion in Burgundy today? As mentioned in Part 4.1, a study during the late 1990’s measured the soil loss in unspecified vineyards of Vosne-Romanée to be 1 mm per year, and the same erosional levels were measured off of the vineyards of Aloxe-Corton.  Ath that alarming rate, losses over the next century would have averaged 10 centimeters or almost 4 inches of topsoil if corrections were not taken. On the even steeper slopes of Monthelie, a study measured almost twice the erosion at 1.7 mm (± 0.5 mm year), with sections of the vineyard which measured a shocking eroded up to 8.2 mm (± 0.5 mm) erosional rate. Luckily, many growers have improved their farming practices, particularly since 2010, and these figures should be lower today. Only future studies can tell us what improvement has been made.

The grape harvest Annonymous 16th century, Southern Holland

“The grape harvest” Anonymous 16th century, Southern Holland

For centuries the solution for this problem was to bring in soil from outside areas to replace what was lost on the slopes of the Côte d’Or. However, in the name of terroir, this is no longer allowed. Current law allows growers to redistribute only the alluvium that comes to rest within appellation boundaries. One can imagine that the laborious process of shoveling out the alluvium from the toe of the plot and redistributing higher in the vineyard is a yearly chore. What earth escapes the appellation lines however, is gone to that appellation forever.

The intention of preserving the purity Burgundy’s unique terroir by forbidding introduction of exogenous soils is somewhat paradoxical, since it is only attempting to preserve the terroir à la minute. While in reality it is ultimately is failing at that – due to erosion. 

A positive, unintended consequence of this inability to replace soil is that growers have finally realized that soil conservation is now more critical than any time in Burgundies’ 1500+ year-old viticultural history. They now know that they must fully understand the factors of soil structure and erosion, while at a municipal level, their villages must invest in effective storm water management; both of which are in various states of development or improvement. 

The long uninterrupted run of vertically oriented rows presents unrelenting erosional pressures on this section of Les Folatieres.

The long uninterrupted run of vertically oriented rows presents unrelenting erosional pressures on this section of Les Folatières. photo googlemaps

While the best modern practices are stemming the tide of erosion, vineyards still can be threatened. Even great vineyards on the mid-slope, like Les Folatières in Puligny-Montrachet, which have long, open stretches of vines without significant breaks in planting, are prone to extensive erosion. While soils are depleted not only in terms of depth, they are changing in terms of particle size and makeup. Erosion most easily targets fine earth fractions, detaching them from their aggregate groupings, and sending them into vineyards farther down slope. Light to medium runoff acts like a sieve, carrying away only the smallest particles, leaving behind material with of larger particles sizes. This in a very real way changes the vineyard’s terroir, and in turn, the wines that are grown there. Wines from vineyards that retain only course soils of large particle size (1) tend to produce wines with less fruit the and less weight, and by consequence revealing a more structured, minerally character.

Even more critical is that soil loss can threaten the vitality and health of the vines, as the soil is literally carried away from beneath them. A vine’s main framework roots is said to require a minimum 11-13 inches to anchor itself to the earth and survive. The problem arises when a section of vineyard does not have extensive fracturing, and the soil level begins to drop below that one foot level. To address this, various growers have responded by “reconditioning” their land. By using a back hoe to break up the limestone below, this can give new vines planted there the living space so the vineyard can continue. Does this change the terroir and the future wine more than inputs of exogenous soil? I should think the answer is yes, significantly. 


Rainfall and rain strike: the first stage of erosion

rainstrike. photo: agronomy.lsu.edu/

rainstrike. photo: agronomy.lsu.edu/

Rainfall is measured by its size and velocity. A raindrop from a drizzle is typically .5 mm in size, and has a terminal velocity (the maximum speed the drop can reach) of 2 meters per second, or 4.5 miles per hour, in still air. The speed it falls, with no assistance from the wind is determined by its ratio of mass to drag. Large raindrops of 5 mm, have more mass in relationship to its drag and accelerate to 9 meters per second, or 20 mph.

Rainfall, meaning the actual physical strike of each drop, can break down soil aggregates (fine sand,  silt clay, and organic materials) and disperse them. Splash erosion has been recorded to drive particles of earth up to 60 cm into the air, and 1.5 m from its point of origin.

Once their limited bonds are broken, the ensuing runoff can carry these materials downslope. Runoff, the most obvious form of erosion, occurs when rainwater cannot infiltrate the soil quickly enough, and exacerbated by the lack of cover crop, lack of organic material, lack of soil structure and negative effects of soil compaction. Of course, this process is most noticeable during high-intensity rainstorms, the amount of soil lost during longer but low-intensity rainfall can be significant. This slower erosion can go largely unnoticed until most of the productive topsoil has been removed by what is referred to as sheet erosion.

Seasonal protection from rainstrike

Compared to most growing regions, the Côte d’Or has a very wet growing season. Storms during this period can bring irregular and unpredictable rain events that can be heavy and long in duration. The winds during harvest tend to be westerly, with warm humid winds bringing rain first over the Hautes Côtes, then to the Côte d’Or, then out across the Saône Valley. The wet warm humid conditions often encourage powdery mildew in the wake of the storms, so there is a tendency to want to prune to open up the canopy for ventilation to prevent mildew. However, the vine canopy can provide significant protection against rainfall strike, depending of course, on the orientation the rows and the of the wind direction. So good canopy coverage for the period that half of the precipitation occurs (April – September)(2) is beneficial in terms of protection from erosion.

As winter arrives, the vines will have lost their foliage, exposing the soil directly for the entire winter and spring to whatever nature has in store.

Rain Rate


Summer storms. Bottom right Photograph: Louise Flanagan theGuardian.com, Bottom left photo Caroline Parent-Gros of A.F. Gros, Top photo Decanter.com

Rainfall is typically measured in millimeters per hour, with a light rainfall slightly tipping the scales at up to 2.5 mm per hour or less than a tenth of an inch per hour. Moderate rainfall is considered to be from 2.5 mm per hour to 10 mm per hour. A heavy rainfall falls between the range of 10 to 50 mm, and a violent rainfall is above 50 mm per hour.


Light rain – drizzle 2.5 mm per hour with a terminal velocity of 2 meters per second

Moderate rain 2.5 mm per hour to 10 mm per hour

Heavy Rain  10 mm per hour to 50 mm per hour

Violent rain, above 50 mm per hour


Good soil structure resists damage from rainstrike and runoff

Good soil structure is the result of the binding of soil into clumps of both small and larger aggregates, meaning sections of soil will bind more strongly together, than those next to them. This allows the soil to maintain the necessary small and large pore spacing, which allows water, air and nutrient infiltration and movement through the soil. Larger amounts of older, more stable organic matter tend to strengthen soil aggregates so any farming practice that increases organic matter, and the subsequent microbiological activity will result in healthier soils.  Stable soil aggregates allow the soil to resist disintegration due rain strike and thusly helps deter erosion.  It also encourages root penetration by creating weak spots between aggregate masses.

Conversely, unstable soil aggregates are more easily dispersed by rainstrike, and the ensuing erosion clogs larger pore spaces of the surface soil. This clogging forming hard crusts on the surface which both restricts both air and water absorption and increases runoff.

The fix apparently is simple. According to soilquality.org, soil forms aggregates readily with the addition of organic manure, as well as allowing cover crops to grow, which has the additional benefit of protecting the soil from rain strike and the ensuing erosion.

Infiltration rate

Erosion Runoff Ardeche

Rill Runoff running fast in Ardeche. Photo http://www.geo.uu.nl/

The speed at which rain can be absorbed into the soil is referred to as infiltration rate. An infiltration rate of 50 mm per hour is considered ideal for farming, because even in heavy rainfall, a well-structured loam will not allow puddling. While the farmers of Burgundy do have some loam in their soils, the geological and topographical factors they face are far more and varied and thus more complex than that of the typical farming situation. I could find no studies done specific to infiltration rates of Burgundian soils, but below are the general rain infiltration rates of general soil types, starting with clay.

The infiltration rate of clay soils, with good to average soil structure, unsurprisingly, do not drain all particularly well, due to their very small-sized particles. Clays typically have an IR of 10mm-20mm per hour. And as we know, transported clay, with its aligned particles, and plasticy quality greatly restricts water flow, and while it will absorb water, it will not allow water to pass through until the entire structure is saturated, greatly slowing drainage. Worse, due to poor farming practices, clay soils can have a decayed structure, which can slow absorption to less than 10 mm per hour. Water tends to puddle on clays with poor structure, causing them deteriorate to the point of deflocculation.

The study of water and how it drains is researched acutely in areas where water is scare, whereas little study of drainage is done in France where rain and water are plentiful. Hence, my investigation of water infiltration in calcium-rich soils lead me to agricultural water policy studies conducted in Palestine and Spain. One such study found that Clayey Marl, with a plasticy character, had an infiltration rate of only 4-8 mm per hour. This low rate of infiltration suggests the soil structure had already been degraded through poor farming practices. Often the villain of low infiltration rates is a combination of frequent deep tillage, herbicide and pesticide use and compaction by walking on or working wet soils, which collapses weaken soil aggregates.  In deeper soils, like at the base of the slope, collapsed soil aggregates can result in hardpan development below ground, while on sloped vineyards, disrupted soil aggregates are very susceptible to erosion.

Clay-loam and clayey-marls, like those found on many lower-slope vineyards, that retain good soil structure, have IR rates beginning at 20 mm per hour. As the percentage of loam increases (equal parts sand, silt, and clay) the IR rate increases up to 50 mm per hour as long as it retains good aggregate stability and there is no compaction.

Loam to sandy soils, which some Bourgogne-level and Village-level vineyards possess, can have very good infiltration rates, again as long as soil structures are good.  Ideally, they can absorb 50 mm of rain per hour, which is the amount that a heavy rainstorm will produce. These vineyards, however, receive all the runoff from the slopes above, and their “well-drained” soils can be overwhelmed.

Sandy soils and Calcareous (limestone) soils can have infiltration rates well in excess 150mm per hour to 200+mm per hour. The problem is these soils drain excessively well, and tend to not retain water well, and are prone to high evaporation rates.  Off point, but quite interesting, are two studies in south-eastern Australia Bennetts et al. (2006) and Edwards & Webb (2006) found that rainwater remained relatively unchanged as it moved though these porous soils that lacked significant amounts of fine earth fractions and organic material. However, water changed its chemical signature quite significantly as it passed much more slowly through clay-rich soils. This finding certainly challenges the long-held assumption that it is the limestone lends many Burgundies their mineral character.

Infiltration Rate, Slope, and Runoff.

Vogue's parcel of Musigny. Source Googlemaps

Vogue’s parcel of Musigny. Grass growth does not seem to be encouraged here. Given Cerdà’s study regarding the erosion of bare soils, one can only wonder how much greater this vineyard could be? The mitigating factor is the vineyard runs horizontally along the top of the hill, and is not deep or highly sloped. Runoff has little opportunity to gain significant suspension velocity. Photo Source googlemaps.com

A study in Spain by A. Cerdà (Univ. de València) examined infiltration rates, runoff, and erosion, on clay, marl, limestone and sandstone. Additionally, he ran these trials with three levels of vegetation covering the soil material: bare, intermediate and vegetated.  The amount of water delivered was 55 mm per hour (which some soils easily absorbed). The study showed slower rates of infiltration on the bare soils, while more highly vegetated soils reduced and almost eliminated runoff and erosion.  Interestingly, marl soils fare the worst for both runoff and erosion rates on bare soils. Yet on vegetated soils, runoff and erosion of the marl were minimal.

They observed, of bare soils, an infiltration rate of  3 to 55 mm per hour, the runoff from 0 to 83%, and the erosion rates from 0 to 3720 grams per hour.

The easily erodible marl soils had up to 83% runoff and a maximum erosion of 3720 grams per hour. So it turns out that marl soils are particularly vulnerable to erosion which sets up an interesting dichotomy: Burgundian’s penchant for discouraging ground cover between the vines, actually encourages erosion – something they seek to, and direly need to avoid.

Clay (soil) and limestone (soil) both had what Cerdà considered to be intermediate levels of runoff and erosion; with a maximum of 46% runoff, and a maximum of 131 grams of soil material eroded per hour.

When we talk about erosion, we are implying there is a slope.

Nearly level: Level, 0% Nearly level <3%
Gently sloping: Very gently sloping >1%, Gently sloping <8%
Strongly sloping: Sloping >4%, Moderately sloping <8%, Strongly Sloping <16%

Source: nrcs.usda.gov

On the rockier terrain of upper slopes, the uneven the soil surface can slow the momentum of water coming down the hillside, despite the steeper grade. However, as the runoff moves downslope, and the soil becomes smoother, the water grows in volume as in joins other rainfall which has not yet infiltrated the topsoil. This increase in volume causes the runoff to increase in its speed and its velocity. Speed and velocity increases are exponential, as its mass allows it overcomes the friction of moving over the soil below. 

Despite the fact that these moderate slopes can attain fairly significant soil depth with normal, moderate rainfall, they are also prone to erosion when exposed to heavier storm-induced runoff. Any long, uninterrupted stretch across these moderate slopes encourages a fast, and often damaging, runoff. As the speed of the water increases, it achieves a volume sufficient to carry larger and larger particles. Cerdà’s study suggests that the marl that has developed on these slopes are particularly vulnerable to heavy runoff if no vegetative cover is allowed to grow among the rows. 

Suspension velocity

water suspension velocity

water suspension velocity source: water.me.vccs.edu/

The ratio of surface area to weight determines a soil particle or rock’s suspension velocity. This is the amount of water velocity needed to carry the object in its flow. As the flow decreases, rocks with higher suspension velocity, meaning they require fast-moving water to carry them, settle out quickly, and are said to have a low settling velocity. As the water slows, it is these, the densest objects, that fall out of suspension first.

Silt and Clay particles have a very low suspension velocity due to their extremely small size, regardless of their density. These particles are easily picked up and washed away by water movement. Unless the clay particles in suspension are adsorbed as it slowly passes a homogeneous clay body (ie. a kaolinite clay body attracts kaolinite clay particles and illite particles will flocculate with an illite body), clay particles will not settle out of solution until the water becomes still and ponds. The same is true with silt, with its slightly larger particle size.

Sand and gravel are larger, with enough density to resist slow-moving water. They are considered to have a higher suspension velocity than silt or clay. But neither sand, gravel, nor even rocks the size of the palm of your hand, are immune from alluvial transport.

Up next: Erosion 4.3 In the water’s path: Studies of Erosion in Vosne


(1) It could be argued that because of Burgundy’s monoculture and high erosion rates will only allow calcisol, and because of that soil development (pedogenesis) is not possible due to the filtering out of fine particles, both mineral, and organic, by erosional processes. Conservation tilling or zero till could greatly change that dynamic, and it is possible with these and other techniques, that growers could expose the truer terroir of Burgundy.

(2) The Wines of Champagne, Burgundy, Eastern and Southern France,  by John J. Baxevanis Rowman & Littlefield Publishers (October 28, 1987)

(3) Could this chemical signature change the flavor of wine? This certainly raises a whole host of questions regarding the impact of fast draining limestone on the flavor or minerality of in wine. This study would suggest the long-held belief by many that limestone gives wines a minerally characteristic is false.