Global Temperatures Rise When Ancient Reefs Encounter Subduction Zones

In working on a new, in-depth project about the geology of Burgundy, I stumbled upon this site this morning – The Global Carbon observatory. Their brief article pretty fascinating.

A Note of clarification before the article: a subduction zone is a location where two of the earth’s plates collide and one plate is forced to slide in subduction (beneath) the other. While this did not happen to the Burgundian Platform, this article gives an interesting view into temperature increases during the Jurassic. The relevance of carbonate platforms to wine drinkers is in the fact that the Burgundian carbon platform developed from a ramp sea floor setting during the middle Bathonian. It was this reefal platform which allowed the Comblanchien limestone to develop. This massive coral platform (the residual of which became Comblanchien stone some 70 meters thick) stretches in a 100 to 130 km swath, from the foot of the Morvan Massif to well into the Swiss Jura and southern German.  Dean

Global Temperatures Rise When Ancient Reefs Encounter Subduction Zones

When the movement of tectonic plates pushes buried ancient reefs into contact with subduction zones, it liberates the carbon in the reef, which escapes through volcanoes. These interactions send carbon dioxide into the atmosphere, where it impacts the global climate, and may have contributed to warm spells during Earth’s history.

19 JULY 2018

Carbonate platforms are ancient reefs that build up over millions of years, composed of the carbon-rich skeletons of coral and other tiny sea creatures. When these reefs get swallowed up by a subduction zone, where one tectonic plate sinks beneath another, the buried carbon can be remobilized and released to the atmosphere through volcanoes lining the subduction zone.

A new study by DCO members Jodie Pall, Sabin Zahirovic, Sebastiano Doss, and Dietmar Müller (all at University of Sydney, Australia), and colleagues, finds that the remobilization of reef carbon through volcanoes can have a measurable impact on global climate. The researchers modeled the intersection of carbonate platforms and subduction zones during Earth’s history since the Devonian period, 410 million years ago. By comparing the total length of these intersections to estimates of historic atmospheric carbon dioxide levels, they could pick out periods when liberated reef carbon contributed to warmer temperatures, including during the Paleocene–Eocene Thermal Maximum (PETM), about 55 million years ago. They report their findings in a new paper in the journal Climate of the Past [1].

Carbonate platforms and subduction zones

Researchers modeled the intersection of carbonate platforms and subduction zones during the last 410 million years of Earth’s history to see if the release of carbon dioxide through volcanoes impacted global climate. Credit: Image courtesy of Pall et. al

Reefs can be both a source and sink for carbon dioxide in the atmosphere. Corals capture carbon dioxide and incorporated into reef structures over time, but that carbon can be rapidly released again to the atmosphere via volcanoes when it collides with subduction zones. “The most notable example is Mt. Etna,” said Pall. “The volcano intersects with a huge carbonate platform and currently emits 20 percent of global volcanic carbon dioxide emissions each year.”

The researchers wanted to know if volcanic release of carbon dioxide from carbonate platforms had impacted Earth’s climate in the past. They assembled previously published data on the location of carbonate platforms since the Devonian period, mapped them onto tectonic plates, and estimated how much carbon the platforms accumulated over time. The researchers could then see how often a carbonate platform came within 500 kilometers of a subduction zone, using the software program GPlates. This open-source software tool, developed by Müller’s EarthByte group and several international collaborators, reconstructs the movement of tectonic plates throughout Earth’s history.

Next, the researchers calculated the total length of carbonate-intersecting subduction zones (CISZs) and compared them to estimates of atmospheric carbon dioxide levels over 410 million years. They used wavelet analysis, which is a statistical test that identifies relationships between two data sets over time. Through the analysis, the researchers could pick out certain periods when peaks in CISZs corresponded to upticks in atmospheric carbon dioxide. “This suggests that there might have been tectonic-forced climate behavior,” said Pall.

1:22

Their analysis showed that these interactions played a role in the temperature spike during the PETM, when global surface temperatures increased by 5 to 9 degrees Celsius within a few thousand years. Carbonate platforms also may have contributed to the warmer Cretaceous-Jurassic climate that occurred about 200 to 100 million years ago. Pall notes, however, that it was difficult to tell if CISZs caused this temperature increase, or if they were simply part of a global increase in subduction zones that occurred at that time.

All of the models and data from this research are open-source and available to the public. This work is part of the “subduction zone analysis toolkit” developed by researchers at EarthByte, which also includes a model of carbon accumulation in carbonate platforms, the lengths of all subduction zones, and the carbon dioxide content of ocean crusts throughout the past 410 million years. The EarthByte group hopes that these resources will be useful to other researchers interested in modeling the paleoclimate and the global carbon cycle.

Published by

Diary of a Winebuyer

About Me: Thirty years ago, I graduated with a degree in political science from the College of Letters and Science at the University of California at Berkeley. Having grown up at the height of the Cold War, I still have vivid remembrances of being instructed to hide under our elementary school desk, covering our heads. The young, white, female teacher, training us without explanation, to face away from the windows. I suppose it is not all that surprising that I had a particular interest in the realpolitik of international relations. My fascination grew with the discovery that certain conditions almost uniformly exist where all revolutions ferment. Did this mean that the revolutions which had occurred in the first half century were revolutions which had been usurped by Marxists who were in the right place at the right time? Probably. A favorite professor was A. J. Gregor. This was a man who, while rakishly wearing a Gestapo-styled black leather motorcycle jacket, exuded expertise on fascism (which he looked the part) and Marxism. Improbably, he did it with a significant swagger. Then in my last semester, I had the blind luck to take a class on Asian Marxist revolution, and the professor, who just happened to be visiting that year while he worked on some unnamed project, was Chalmers Johnson. In retrospect, I should have known his name, as he was a luminary in the political science community but at that time, I did not. It was a remarkable opportunity to experience the ivory tower, but I seem to remember being anxious to get on with life. After college, I drifted through a few of jobs that were of interest to me. One of my former high school teachers said to me. "If I were in your shoes, I'd get a job as a flight attendant." So in order to be young while I could still afford to, I accepted a job serving chicken or beef at Pan American. With that airline losing money faster than it could sell its routes, I got a job doing cellar work at David Bruce Winery. This was the beginning of my wine career. All during this period, I wrote a still unpublished novel about homegrown terrorists the U.C. Berkeley campus, attempting to use some of what I learned in school, weaving in the Vietnamese political and military strategies of Dau Tranh as professor Johnson had lectured years before. Since the early 1990's, I have been involved in the wine industry, selling fine wine in both the retail and wholesale arenas. I have approached learning about wine, by always challenging myself to question how I know what I think I know? And in an effort to try to find answers I've turned, with varying degrees of success to wine books. Overall, I've not been happy with the quality of most wine writing, finding the authors either to lack any deep knowledge, or unable to move much past what I consider to be superficial information. I recognize that wine writers have to monetize their work, but I believe this has dramatically held back our knowledge and understanding of wine. I have set out to add to our industry's base of knowledge where I can. My first series, 'The Terroir of Burgundy' (which I should probably re-edit and complete some kind of conclusion, but I got involved in this project), can be viewed here. I currently work as a sales and marketing manager for a Burgundy and Bordeaux importer based in Atherton, California.

Leave a comment